
시간경과에 따른 말뚝의 지지력 변화

- 목 차 -

- 1. 서 론
- 2. 점성토지반에서의 시간경과효과
- 3. 사질토지반에서의 시간경과효과
- 4. 측정사례
 - 4.1 Karlsrud and Haugen(1986)
 - 4.2 Tavenas and Audy(1972)
 - 4.3 Fellenius 등(1989)
 - 4.4 Kehoe(1989)
 - 4.5 Skov and Denver(1988)
 - 4.6 Preim 등(1989)
 - 4.7 Svinkin 등(1994)
- 5. 결론 및 제언
- 6. 참고문헌

1. 서 론

말뚝기초의 연직지지력(이하 말뚝지지력이라 칭함)을 이론적으로 설명하면 [그림 1]과 같이 표시할 수 있으며, 이를 식으로 표시하면 식(1)~식(5)와 같다.

[그림 1] 말뚝기초의 지지력 개념도

$$Q_u = Q_b + Q_s \tag{1}$$

$$Q_{\mathfrak{z}} = q_{\mathfrak{z}} \cdot A_{\mathfrak{z}} \tag{2}$$

$$q_b = \sigma'_{vb} \cdot N_q + cN_c \tag{3}$$

$$Q_{\mathfrak{s}} = f_{\mathfrak{s}} \cdot A_{\mathfrak{s}} \tag{4}$$

$$f_s = c_a + \sigma'_{v} \cdot K_s \cdot \tan \delta$$
 (5)

여기서 Q_{u} : 말뚝의 극한지지력

 Q_{b} : 말뚝의 극한선단지지력

 $Q_{
m s}$: 말뚝의 극한주면마찰력

 $q_{oldsymbol{\delta}}$: 단위면적당 극한선단지지력

 q_s : 단위면적당 극한주면마찰력

 A_{\star} : 선단부 단면적

 A_s : 주면마찰력이 발생하는 말뚝의 주면적

σ´μ : 말뚝선단부에서의 지반의 유효상재압

σ΄" : 말뚝주변 지층의 평균 유효상재압

c : 말뚝지지층의 점찰력

 c_a : 말뚝과 주변 흙사이의 부착력

 N_a , N_c : 깊은기초의 지지력 계수

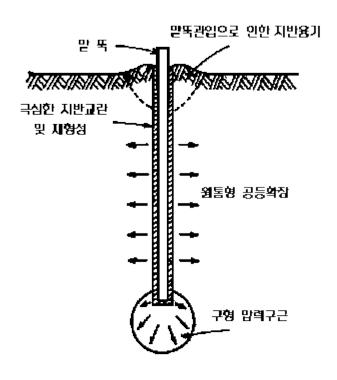
 K_s : 말뚝주면에 작용하는 법선토압계수

8 : 말뚝과 주변 흙사이의 마찰각

식(1)~식(5)를 사용하여 이론적인 말뚝지지력을 계산하기 위해서는 (1) 말뚝의 조건(A_b , A_s) (2) 지반조건(σ'_{vb} , σ'_v , c) (3) 말뚝과 지반간의 상호작용에 의해서 결정되는 조건(c_a , N_a , N_c , K_s , δ) 등 입력자료를 결정해야 한다.

이들 다양한 입력자료들은 지반조사를 근거로 하여 결정하는 것이 일반적 말뚝해석이지만, 이들 중 상당수는 말뚝의 설치방법에 따라 크게 변화하며 따라서 신뢰도 높은 말뚝지지력 해석을 위해서는 말뚝설치과정에 따른 지반조건 변화, 즉 말뚝-지반간 상호작용에 대한 이해가 필수적이다.

말뚝이 지반내에 항타시공되면 말뚝의 항타관입에 따라 지반은 극심한 변화를 겪게 된다. 지반변화의 주요내용은 지반응력변화, 간극수압변화, 흙구조변화 등 다양하며 이와 같은 변화는 말뚝이 설치된 시점으로부터의 시간경과에 따라 다시 변화하게 된다. 이에 따라 말뚝의 지지력은 말뚝이 설치된 시점으로 부터 경과한 시간에 따라 변화한다. 이와 같은 사실은 일찍부터 알려져 왔으나 이를 실증하기 위해서는 여러가지 지반조건에서, 시간경과에 따라 말뚝지지력을 확인할 수 있어야 한다. 그러나 동일말뚝에 대하여 연속적으로 시간과 비용이 소요되는 정재하시험을 실시하는 것은 용이치 않으며, 재하과정에서 항복 또는 극한상태에 도달할 경우의 영향 또한 무시할 수 없는 등의 문제로 이 부분의 실증연구는 부진한 상태였다. 이에따라 실무에서는 시간경과에 따른 말뚝지지력 변화를 설계지지력 산정에 고려할 수 없었다.


최근의 말뚝동재하시험(Dynamic Pile Loading Testing)과 관련한 측정기술, 해석의 발달은 시간경과에 따른 말뚝지지력 변화 연구에 결정적인 도구를 제공하여 주었으며, 실증연구 또한 활발히 수행될 수 있는 계기를 마련하여 주었다.

시간경과에 따른 말뚝지지력 변화 연구결과에 의하면 말뚝지지력의 변화폭은 이전에 생각하였던 것보다 훨씬 큰 것으로 나타나고 있으며, 지반조건에 따라서는 말뚝지지력에 영향을 미치는 다른 어떤 요소보다도 중요한 것으로 판단된다.

본 기술자료에서는 말뚝지지력에 미치는 시간경과의 영향을 점성토와 사질토 지반에 대하여 검토하고, 실제 측정된 말뚝지지력 변화를 소개하였다.

2. 점성토지반에서의 시간경과효과

점성토지반에 말뚝을 항타관입하면 [그림 2]와 같은 지반변형이 발생한다.

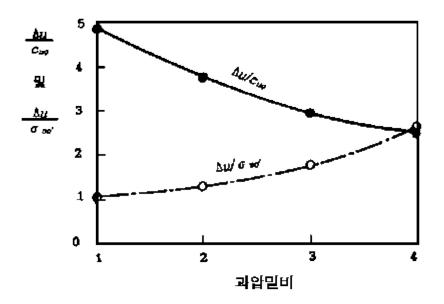
[그림 2] 점성토지반에서 말뚝항타로 인한 지반변형 (after Randolph and Wroth, 1982)

말뚝이 관입되면 말뚝선단부 부근에서는 구형압력구근(spherical pressure bulb)이 형성되며 말뚝주면부에서는 원통형 공동확장(cylindrical cavity expansion)과 유사한 지반거동을 유발시킨다. 이때 말뚝주면부와 인접한 구간([그림 2]에서 빗금친부분)에서는 극심한 지반교란이 발생하며, 흙구조는 재성형(remoulding)상태에 도달하게된다. 이와 동시에 말뚝관입 및 항타로 인한 지반진동 등의 영향으로 간극수계에도격심한 변화가 유발되어 상당히 큰 과잉간극수압(excess porewater pressure)이 발생한다.

항타로 인한 이러한 지반조건변화는 말뚝지지력을 결정하는 영향요소들을 변화시키고 따라서 말뚝의 지지력도 변화하게 된다.

항타로 인한 말뚝주변 지반의 교란(disturbance), 재성형과정이 말뚝의 주면마찰력에 미치는 영향은 크게 (1) 과잉간극수압발생 및 시간경과에 따른 소산 (2) 과잉간극수압소산에 따른 1 차 압밀효과 (3) 1 차 압밀완료후의 2 차압밀효과로 나누어 생각할 수 있다.

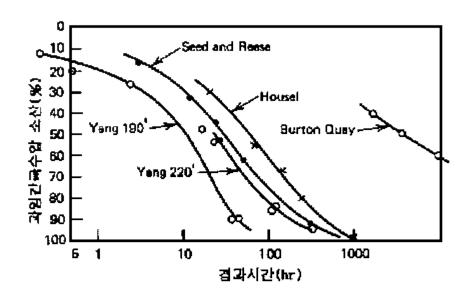
(1) 항타로 인한 과잉간극수압은 점성토 지반의 연경도, 과압밀비 등에 따라 상이하게 나타난다. Randelph 등(1979)은 항타로 인하여 발생하는 과잉간극수압을 아래와 같은 경험식으로 표시하였다.


$$\Delta U = 4c_{10} - \Delta P^{'} \tag{6}$$

여기서, ΔU : 항타로 인한 과잉간국수압

 c_{w} : 지반의 원위치 전단저항

 $arDelta P^{'}$: 전단으로 인한 지반의 평균 주음력 변화


정상압밀 점성토 지반에서의 $\Delta P'$ 값은 $-1 \sim -1.5$ c_{uo} 정도이며 과압밀비가 $2 \sim 3$ 보다 큰 과압밀 점성토 지반에서는 $\Delta P'$ 값이 양의 값을 갖는다. 이와 같이 과압밀비(OCR, overconsolidation ratio)에 따른 과잉간극수압 발생은 Francescon (1982)의 모형실험 결과에서도 잘 나타나고 있다.([그림 3])

[그림 3] 말뚝설치로 인한 과잉간국수압 발생 (after Francescon, 1982)

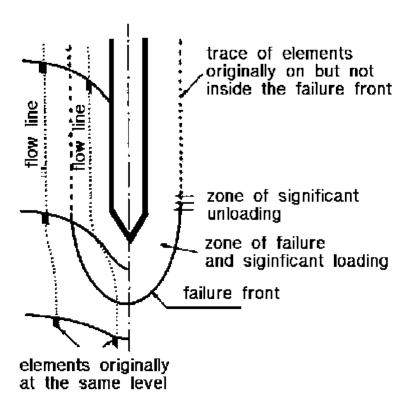
발생된 과잉간극수압은 시간이 경과함에 따라 감소하게 된다. 시간경과에 따른 과잉간극수압 감소 및 완전소산은 점성토의 투수계수에 따라 상이하며, 실측된 결과에 의하면 상당한 시간이 경과하여도 과잉간극수압이 소산되지 않는 것으로 나타나고 있다.

[그림 4]는 여러 연구자들의 실측결과를 함께 도시한 것으로 대부분의 경우 발생된 과잉간극수압은 1000 시간(42 일) 정도가 경과하면 소산되나, 10000 시간(417 일) 경과 후에도 상당한 과잉간극수압이 상존하는 사례도 나타나고 있다.

[그림 4] 시간경과에 따른 과잉간국수압 소산 (after Soderberg, 1962)

항타시 발생한 과잉간극수압은 지반내의 유효응력을 감소시키며, 시간이 경과하면 과잉간극수압의 감소에 따라 지반내의 유효응력이 증가하게 된다. 이론적인 말뚝지지력은 식(3) 및 식(5)에 나타난 바와 같이 지반의 유효상재압의 함수인 바, 시간경과에 따른 지반내의 유효응력증가는 결국 말뚝지지력의 증가를 가져오게 된다.

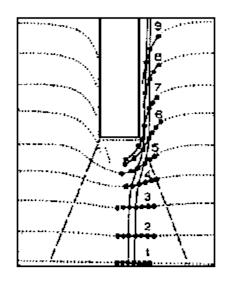
(2) 앞에서 설명한 바와같이 항타로 인한 과잉간극수압 발생과 시간경과에 따른 과잉간극수압 소산은 지반내의 유효응력변화 뿐만 아니라 점성토 지반의 함수비와 흙구조의 변화를 유발하게 된다.

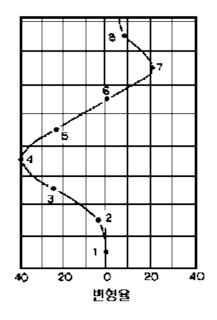

과잉간극수압의 소산은 지반내의 함수비 저하를 가져오게 되고 이로 인한 지반의 전단강도 증가가 나타나게 된다. Randolph and Worth(1982)는 함수비 저하로 인하여 40~60% 정도의 전단강도 증가가 나타남을 보고하였다. 지반의 전단강도 증가는 결국 말뚝의 주면마찰력과 선단지지력을 증가시키게 된다.

(3) 이상은 항타로 인한 과잉간극수압 발생과 소산과정에서 지반내의 유효응력증가, 압밀에 따른 함수비 저하와 이로인한 지반의 전단강도 특성이 시간경과에 따른 말뚝지지력 증가를 가져오게 됨을 설명한 것이다. 그러나 과잉간극수압이 완전히 소산된 후에도(1 차압밀이 완료) 점성토지반에서는 2 차압밀(secondary consolidation)이 나타나게 된다. 2 차압밀은 점성토지반의 흙구조를 변화시키며 이로인한 지반의 전단강도 증가 및 말뚝지지력 증가가 나타나게 된다.

(4) 이밖에 점성토지반에서는 말뚝설치로 인한 지반교란 및 재성형효과가 시간이 경과함에 따라 thixotropy 또는 ageing 효과를 유발하게 되고 따라서 말뚝의 지지력은 증가하게 된다.

3. 사질토지반에서의 시간경과효과


사질토지반에 말뚝을 관입시키면 [그림 5]와 같은 지반변형이 발생하게 된다.

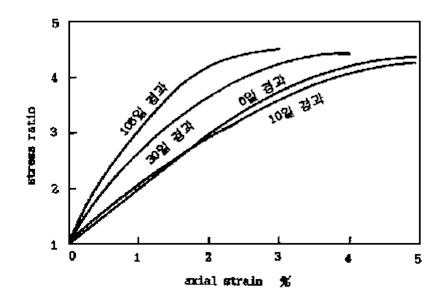


[그림 5] 사질토지반에서 말뚝관입으로 인한 지반변형 (after AlAwkati, 1975)

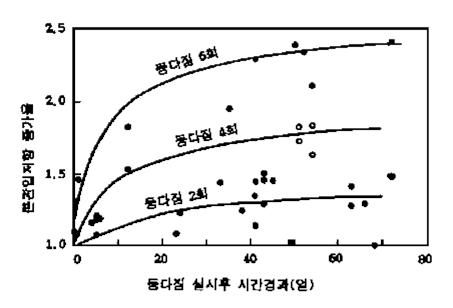
사질토지반내에 말뚝이 관입되면 다짐효과로 인하여 흙입자의 재배치(rearrangement), 상대밀도변화 또는 입자파쇄 등이 발생한다. 따라서 느슨한 사질토 지반에서는 말뚝주위에 원지반 상태보다 상대밀도 값이 높은 지반조건이 형성된다. 반대로 조밀한 사질토 지반에서는 말뚝관입으로 체적팽창(dilation)이 일어나게 되고 원지반 상태보다 낮은 값의 상대밀도를 갖는 지반조건이 형성된다.

[그림 6]은 Robinsky and Morrison(1964)이 납구슬(lead shot)을 매설한 인공지반에서 말뚝을 관입시키며 발생하는 지반변형을 X-ray 로 관측한 결과이다. 그림에서 나타난 바와 같이 말뚝선단부 아랫쪽에는 상당히 큰 압축변형이 나타나고 있으며 말뚝선단부보다 윗쪽의 지반에서는 인장변형이 나타나고 있다.

- (a) 말뚝관입으로 인한 지반변형 b) 말뚝관입으로 인한 변형율


[그림 6] 사질토 지반에서 말뚝관입으로 인한 지반변형 (after Robinsky and Morrison, 1964)

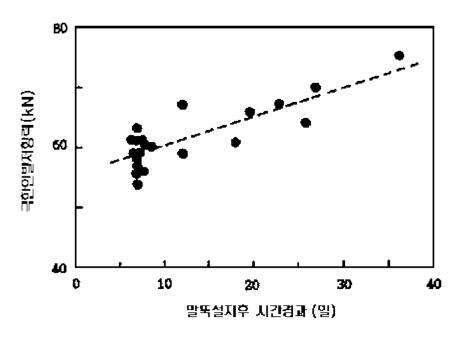
이와 같은 지반변형에는 간극수압 또한 반응하여 변화를 보여 주지만 사질토 지반에서는 투수계수가 상당히 크기 때문에 과잉간극수압 소산에 그리 큰 시간을 요하지 않는다. 따라서 사질토 지반에서 말뚝의 관입으로 일어나는 지반의 변화는 흙입자의 재배치와 상대밀도 변화로 요약할 수 있다. 그러나 이와같은 지반변화가 말뚝이 설치된 시간경과에 따라 점성토 지반에서와 같이 추가적인 지반변화를 유발시키지는 않는 것으로 알려져 왔다. 즉 이제까지는 사질토 지반에 설치된 말뚝의 지지력은 시간경과에 영향을 받지 않으며 따라서 실무에서 이를 고려하지 않는 것이 정설로 받아들여 지고 있었다.


그러나 근래에 들어 사질토 지반에서의 ageing 효과에 대한 각종 연구결과는 시간경과가 사질토 지반의 전단강도에 미치는 영향이 상당히 큰 것으로 보고하고 있다.

[그림 7]은 포화된 사질토의 삼축압축 시험결과로 시간경과에 따라 modulus 값이 거의 2 배까지 증가되었음을 보여준다. [그림 8]은 10 m 두께의 실트질 사질토층에서 동다짐공법시행후 실시한 정적관입시험 결과로서 시간경과에 따라 콘관입저항값이 크게 증가하고 있음을 보여주고 있다. 콘관입저항값은 시공 후 60 일까지 상당히 큰 폭으로 증가하고 있으며 여기서 나타나고 있는 것처럼 동다짐 횟수가 많아질수록 시간경과의 영향 또한 증가함을 보여준다. Schmertmann(1991)은 이로부터 지반의 원래 흙구조의

파손(disaggregation) 정도가 크면 클수록 그만큼 시간경과의 효과도 커지는 것으로 결론짓고 있다.

[그림 7] 사질토에서 시간경과에 따른 modulus변화 (after Daramala, 1980)


[그림 8] 실트질 사질토층에서 동다짐시행후 시간경과에 따른 콘관입저항변화 (after Schmertmann, 1987)

사질토지반에서의 ageing 효과에 대한 연구결과들은 사질토지반에 설치된 말뚝의 지지력이 시간경과에 따라 상당한 변화가 있을 수 있음을 시사해준다.

4. 측정사례

4.1 Karlsrud and Haugen(1986)

과압밀 점토층에 항타된 말뚝의 인발시험을 통하여 시간경과에 따른 말뚝의 주면마찰력 변화를 측정하였다. 지반내에 매설한 계측장치에 의하면 말뚝항타후 6 일 정도의 시간이 경과하자 지반의 전응력 및 유효수평응력은 일정한 값을 갖게 되었으며, 항타로 인한 과잉간극수압은 소산된 것으로 판단할 수 있었다. 인발시험결과는 [그림 9]와 같으며, 이로부터 과잉간극수압 소산후에도 30 일 경과시 약 30%의 주면마찰력증가가 나타났으며, 이는 ageing 에 의한 것으로 판단할 수 있다.

[그림 9] 시간경과에 따른 말뚝지지력 증가 (after Karlsrud and Haugen, 1986)

4.2 Tavenas and Audy(1972)

투수계수 k = 10⁻² cm/s 인 사질토층에 45 개의 말뚝을 항타하였다. 투수계수가 높은 지반조건인 바 항타로 인한 과잉간극수압은 불과 수시간 만에 소산되었다. 항타후 2~3 주간 측정한 말뚝지지력은 평균 70%의 지지력 증가를 나타내 주었으며 항타로 인한 말뚝주변지반의 흙구조 변화가 이러한 지지력 증가를 가져오게 한 것으로 판단된다.

4.3 Fellenius 등(1989)

실트질 점토 및 점토질 실트층 하부에([표 1] 참조) 점토, 실트, 모래, 자갈 등이 혼재한 빙적토층을 지지층으로 하는 지반조건에 선단부가 폐색된 강관말뚝과 H 형 강말뚝을 항타시공하였다([표 2] 참조). 본 측정의 목적은 시간경과에 따른 말뚝지지력 증가를 기정사실로 인정하고, 측정결과로 부터 말뚝의 관입깊이를 조정하기 위함이었다.

[표 1] 시험지반조건

지층별	토 질 조 건	토층두께 (m)	단위중량 (ton/m³)	평균 비배수 전단강도 (kg/cm²)	내부마찰각
1	매립토	4,5 ~ 7,5	1,76	_	30°
2	연약 또는 중간정도의 굳은 실트질 점토 및 점토질 실트, 유기질 포함	18,0 ~ 21,0	1,68	0,39	26°~ 28°
3	빙적 토	25,5 ~ 28,5	1,84	1,95	35°~ 38°
4	백문석 기반암	깊이 49,5 ~ 64,5	_	-	0

주 : 지하수위는 지표면으로 부터 2.4 m 깊이에 존재

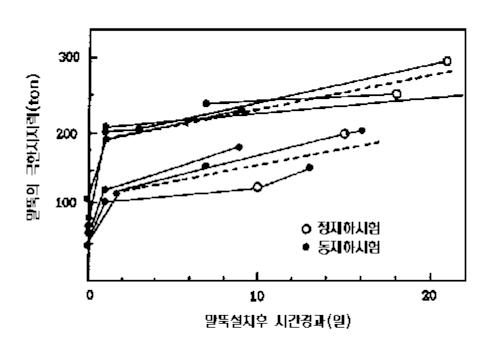
[표 2] 시험말뚝

말뚝표시	말뚝종류	통종류 말 뚝 규 격		적 (cm')
= \(\frac{1}{2} \)	245n		강 재	콘크리트
А	강관말뚝	ø 324 mm×9,5 mm(t)	94.2	730,0
В	H형 강말뚞	12 HP 63	118,7	0
С	mandrel사용 강관말뚝	ø 356 mm×4,8 mm(t) [하부 6 m, ø 356 mm×7,9 m(t)]	52,9 85,2	940,6 906,4
D,E,F,G,H,I	강관말뚝	ø 244,6 mm×13,8 mm(t)	100,0	369,0

본 측정에서는 동재하시험기(PDA, Pile Driving Analyzer)를 사용하여 항타종료시(EOID, end of initial driving)와 재항타(RSTR, restrike)시 동재하시험을 실시하였으며, 동재하시험 결과와 정재하시험 결과의 대비를 위하여 총 15 회의 정재하시험이 실시되었다.

여러가지 말뚝에 대한 동재하시험 및 정재하시험 결과는 [표 3]에 요약하였으며 [그림 10]에는 이 결과를 시간경과에 대하여 함께 도시하였다.

[표 3] 정재하시험 및 동재하시험결과 요약


	nree or or		==.	D =1 +1 +1 =4	T1 T1 E4
말뚝종류	말뚝길이 (m)	시험종류	시험시기 (일)	국한지지력 (ton)	지지력 증가비율
	(1117	EOID		, ,	0/1012
A-2	35,1	EOID	0	96,2	
		RSTR-1	1	191,4	1,99
A-4	35,1	EOID	0	122,5	
	00,1	STAT	9	230,4	1,88
		EOID	0	49,9	
		RSTR-1	2	122,5	2,45
B-2	46,5	RSTR-3	7	154,2	3,09
		STAT	15	142,4~258,5	2,85~5,18
		RSTR-4	16	204,1	4,09
	46,5	EOID	0	66,2	
B-4		RSTR-1	1	123,4	1,86
		RSTR-2	9	181,4	2,74
E-2	42.0	STAT	15	299,4	
		EOID	0	85.3	
F-1	42,6	RSTR-1	1	208,7	2,45
		STAT	51	299,4	3,51
		EOID	0	70,8	
	400	RSTR-1	1	203,2	2,87
G-1	42,0	TSTR-2	3	205,9	2,91
		STAT	21	299,4	4,23
11 1	400	RSTR-1	5	181,4	
H-1	43,2	STAT	14	172,4	
H-2	42,6	RSTR-1	3	168,7	

말뚝종류	말뚝길이 (m)	시험종류	시험시기 (일)	극한지지력 (ton)	지지력 증가비율	
I-1	41.7	RSTR-1	7	240,4		
	41,7	STAT	18	254,0		
1-2	41.7	RSTR-1	7	166,0		
	42,6	EOID	0	48,1		
B-3		40.6	RSTR-1	1	107,0	2,23
B-3		STAT	10	92,5~157,9	1,92~3,28	
		RSTR-3	13	152,4	3,17	
E-4	45,9	EOID	0	100,0		
L-4	#D,B	RSTR-1	1	189,6	1,90	

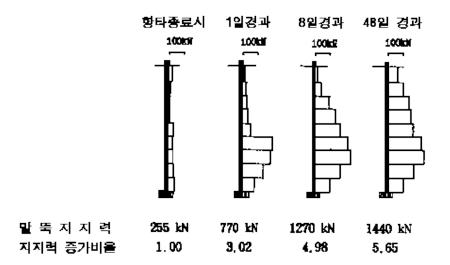
주) EOID : 항타종료시 동재하시험 RSTR : 재항타시 동재하시험

RSTR뒤의 숫자는 재항타시 시행한 동재하시험의 차수

STAT : 정재하시험

[그림 10] 시간경과에 따른 말뚝지지력 증가 (after Fellenius등, 1989)

[표 3]과 [그림 10]에 나타난 바와 같이 항타종료후 시간경과에 따른 말뚝지지력 증가는 동재하시험과 정재하시험 모두에서 유사하게 나타나고 있다. 지지력 증가비율은 항타종료시 측정한 값의 2~5 배에 달하고 있으며, 급격한 지지력 증가는 항타후 1 일까지에서 나타나고 있음을 알 수 있다. 항타후 1 일 경과까지의 급격한 지지력증가이후에도 지지력 증가 추세는 계속되고 있으며 약 20 일까지 측정한 결과는 항타후 1 일경과시 지지력보다 50% 정도 증가하였음을 알 수 있다.


4.4 Kehoe(1989)

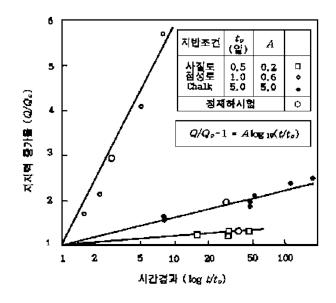
4.5 Skov and Denver(1988)

시간경과에 따른 말뚝지지력 변화를 조사하기 위하여 사질토, 점성토 및 chalk 지반에 말뚝을 항타하고 동재하시험 결과를 분석하였다. [그림 11]은 점성토 지반에서 시간경과에 따라 말뚝지지력의 변화를 CAPWAP 분석한 결과이다.

[그림 11]에 나타난 바와 같이 말뚝지지력은 48 일 경과시 항타종료시 측정한 값의 5.65 배에 달하고 있다. 말뚝지지력 증가는 그림에서도 나타나고 있듯이 거의 대부분 주면마찰력의 증가에 기인한다.

[그림 12]에는 사질토, 점성토, chalk 지반에서 측정한 시간경과에 따른 말뚝지지력 증가를 함께 도시하였다. 이 결과에서 나타나고 있듯이 시간경과에 따른 말뚝지지력은 시간을 대수눈금으로 하여 표시하면 거의 직선적인 증가가 나타나며, 이로부터 아래와 같은 관계식을 도출하였다.

[그림 11] 시간경과에 따른 말뚝지지력 증가 (after Skov and Denver, 1988)


$$Q/Q_o - 1 = A \log_{10}(t/t_o) \tag{7}$$

여기서, Q : 시간 #에서의 말뚝지지력

 Q_o : 시간 t_o 에서의 말뚝지지력

 t, t_o : 항타종료시로 부터의 경과시간

 $oldsymbol{A}$: 지반조건에 따라 결정되는 계수

[그림 12] 시간경과와 말뚝지지력 증가의 관계 (after Skov and Denver, 1988)

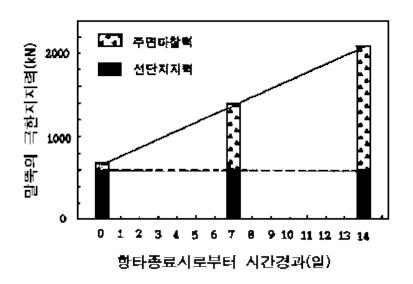
4.6 Preim 등(1989)

본 연구에서는 주로 점토질 세립모래와 실트질 세립모래층으로 이루어진 지반조건에 직경 323 mm 의 강관말뚝과 355 mm 의 사각 콘크리트 말뚝을 항타하였다. 항타종료시와 항타종료후 1 주일이 경과된 시점에 동재하시험을 실시하고 측정결과를 CAPWAP 분석하였다. CAPWAP 분석결과는 [표 4]와 같다.

[표 4] CAPWAP 분석결과

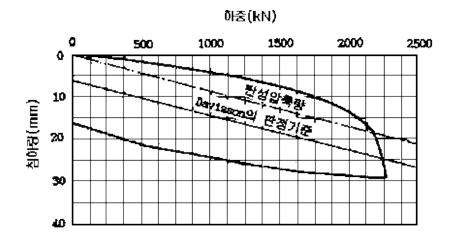
	항 타 종 료 시			재 항 타 시		
말뚝종류	주면 마찰력	선단 지지력	전체 지지력	주면 마찰력	선단 지지력	전체 지지력
ø 323mm 강관말뚝	80	600	680	795	435	1230
□ 350mm 콘크리트말뚝	205	930	1135	1375	935	2310

(단위 : kN)


[표 4]에 나타난 바와 같이 CAPWAP 분석결과 말뚝의 지지력은 항타 종료시보다 1 주일후 재항타 하였을때 강관말뚝은 1.81 배, 콘크리트 말뚝에서는 2.04 배로 증가한 것으로 나타나고 있다. 말뚝지지력 증가는 거의 대부분 주면마찰력 증가로 부터 나타나고 있으며 선단지지력은 거의 증가가 없으며, 강관말뚝의 경우에는 오히려 선단지지력이 감소하는 것으로 나타나고 있다. 이 같은 결과는 재항타시 타격에너지가 충분하지 못하여 선단지지력의 극한까지 확인되지 못한 때문으로 판단된다.

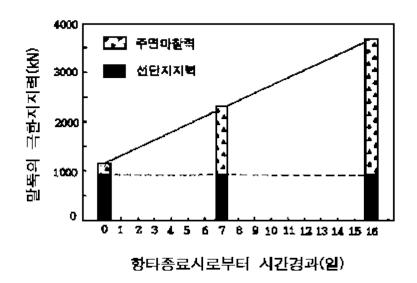
본 사례에서는 말뚝지지력은 시간경과에 따라 비례하여 증가하는 것으로 가정하여 임의시간 경과후의 말뚝지지력을 계산하고, 이 시점에 정재하시험을 실시하여 예상지지력과 정재하시험 결과를 비교하였다. 임의시점의 말뚝지지력 계산시 시간경과에 따른 말뚝지지력 증가는 주면마찰력에만 해당되는 것으로 가정하였고, 선단지지력은 변화가 없는 것으로 가정하였다.

강관말뚝의 경우에는 항타종료후 14 일에 정재하시험을 실시하였으며 이때의 예상지지력은 아래와 같이 계산되었다.([그림 13] 참조)


14일 경과시 말뚝지지력=600+[80+14(795-80)/7]=2110*kN*

항타종료시와 재항타시 측정된 주면마찰력을 비교해 보면 9.9 배의 증가가 나타나고 있으며 이로부터 14 일 경과 후의 주면마찰력을 예상해보면 항타종료시 측정된 주면마찰력의 18.9 배가 되고 전체지지력은 항타종료시 측정된 지지력 대비 3.1 배가 된다.

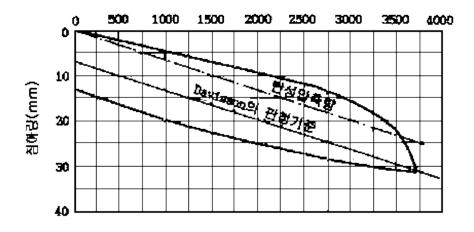
[그림 13] 강관말뚝에서 시간경과에 따른 말뚝지지력 증가 (after Preim등, 1989)


항타종료후 14 일에 실시된 정재하시험 결과는 [그림 14]와 같으며, 이 결과를 Davisson 의 판정법으로 해석하면 2240 kN 의 극한하중을 갖는 것으로 판정할 수 있다. 이 값은 주면마찰력이 시간경과에 따라 직선적으로 증가한다는 가정에 의한 예상지지력보다 6% 큰 값이다.

[그림 14] 항타종료후 14일에 실시된 정재하시험결과 (after Preim등, 1989)

콘크리트 말뚝은 항타종료후 16 일에 정재하시험이 실시되었으며 이때의 예상지지력은 다음과 같이 계산되었다.([그림 15] 참조)

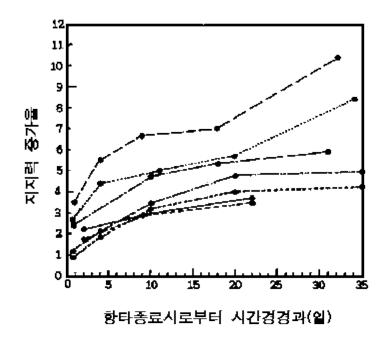
16일 경과시 말뚝지지력=935+[205+16(1375-205)/7]=3814kN



[그림 15] 콘크리트말뚝에서 시간경과에 따른 말뚝지지력 증가 (after Preim등, 1989)

콘크리트 말뚝의 경우 항타종료시 측정된 선단지지력과 재항타시 측정된 선단지지력은 거의 같은 값을 갖는다. 반면 주면마찰력은 6.7 배로 증가되었다. 이로부터 정재하시험이 실시된 시점, 항타종료후 16 일의 예상 말뚝지지력은 항타종료시 측정된 말뚝지지력 대비 3.36 배가 되며, 이 값은 항타종료후 7일의 측정된 말뚝지지력의 1.65 배가 된다.

항타종료후 16 일에 실시된 정재하시험 결과는 [그림 16]과 같다. 정재하시험 결과를 Davisson 판정법으로 해석하면 3692 kN 의 극한지지력이 판정되며, 이 값은 예상지지력보다 3% 낮은 값이다.


[그림 16] 항타종료후 16일에 실시된 정재하시험결과 (after Preim등, 1989)

4.7 Svinkin 등(1994)

Svinkin 등은 시간경과에 따른 말뚝지지력 변화를 지반조건별로 규명하기 위하여 점성토지반과 사질토 지반에 말뚝을 항타하고 시간경과에 따른 지지력을 동재하시험 및 정재하시험으로 측정하였다.

점성토 지반에는 7 본의 콘크리트 말뚝을 항타하여 최장 35 일까지의 지지력 변화를 조사하였다. 시험결과는 [표 5]에 요약하였으며, [그림 17]에는 시간경과에 따른 말뚝지지력 증가율(항타종료시 대비)을 나타내었다.

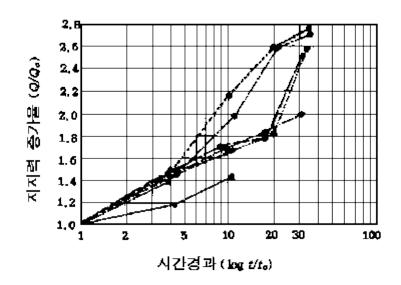
말뚝지지력 증가는 초기의 항타종료시부터 1 일 또는 2 일간 급격하게 발생하며 증가율은 지반조건에 따라 1.93 내지 4.45 배에 달하고 있다. 이후 시간경과에 따라 최장 35 일까지 측정된 지지력 증가율은 항타종료시 측정된 지지력 대비 4.48 내지 11.37 배가 된다.

[그림 17] 점성토지반에서의 시간경과에 따른 말뚝지지력 증가율 - 항타종료시 대비(after Svinkin등, 1994)

이 시험결과를 Skov and Denver(1988)의 제안식을 적용하여 분석해 보았다. 식(7)에서 t。의 값을 항타종료시 부터 일정한 시간이 경과된 시점, 즉 첫번째 재항타 시점으로 하여 이때의 지지력 대비 말뚝지지력 증가비율은 반대수 눈금에 표시하였다.([그림 18])

[표 5] 점성토지반에서의 시험결과 요약

말뚝 번호	말뚝규격	시험종류	시험시기 항타종료후 (일)	식(7)의 A계수	극한지지력 (KN)	지지력 증가비율 ⁽¹⁾	지지력 증가비율 ⁽²⁾
		EOID	_	0.36	752	1.00	_
	콘크리트말뚝	RSTR-1	2		2451	3.26	1.00
	ø 1372×127mm(t)	RSTR-2	9		2927	3.89	1.19
		RSTR-3	22		3545	4.71	1.45
		EOID	_	0.67	712	1.00	_
TP2	콘크리트말뚝	STAT1	2		1913	2.69	1.00
1172	ø 1372×127mm(t)	STAT2	9		2789	3.92	1.46
		STAT3	22		3189	4.48	1.67
		EOID	-	0.68	267	1.00	-
	3000000	RSTR-1	1		912	3.42	1.00
TP3	콘크리트말뚝 ∅ 305mm 중공부	RSTR-2	10		1530	5.73	1.68
		RSTR-3	18		1672	6.26	1.83
		STAT	31		1841	6.90	2.02
		EOID	-	0.76	200	1.00	-
	콘크리트말뚝 ∅ 475mm 중공부	RSTR-1	1		890	4.45	1.00
TP4		RSTR-2	4		1299	6.50	1.46
1174		RSTR-3	9		1517	7.59	1.70
		RSTR-4	18		1601	8.01	1.80
		STAT	32		2273	11.37	2.55
		EOID	_	0.69	262	1.00	_
		RSTR-1	1		952	3.63	1.00
TP5	콘크리트말뚝	RSTR-2	4		1 401	5.35	1.47
1173	∅ 475mm 중공부	RSTR-3	11		1588	6.06	1.67
		RSTR-4	20		1748	6.67	1.84
		STAT	34		2473	9.44	2.60
		EOID	-	0.99	400	1.00	-
		RSTR-1	1		885	2.21	1.00
TP6	콘크리트말뚝	RSTR-2	4		1241	3.10	1.40
100	ø 914×127mm(t)	RSTR-3	10		1766	4.42	2.00
		RSTR-4	20		2300	5.75	2.60
		STAT	35		2406	6.02	2.72


		EOID	-	1.07	454	1.00	-
		RSTR-1	1		876	1.93	1.00
TD7	TP7 콘크리트말뚝 Ø 914×127mm(t)	RSTR-2	4		1 285	2.83	1.47
' - '		RSTR-3	10		1890	4.16	2.16
		RSTR-4	20		2260	4.98	2.58
		STAT	35		2406	5.30	2.75

주) EOID : 항타종료시(end of initial driving)

(1) 항타종료시 기준

RSTR: 재항타(restrike) - 옆의 숫자는 재항타 차수 (2) 1차 재항타시 기준

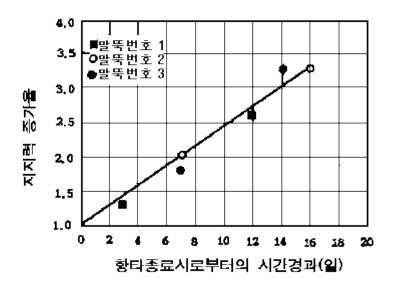
STAT : 정재하시험 - 옆의 숫자는 정재하시험 차수

[그림 18] 점성토 지반에서의 시간경과에 따른 말뚝지지력 증가율 - 1차 재항타시 대비(after Svinkin등, 1994)

말뚝지지력은 시험이 실시된 지반조건에 따라 항타종료후 22~35 일간 1.45~2.75 배 증가한 것으로 나타나고 있다. 시간경과에 따른 말뚝지지력 증가특성을 식(7)의 A 계수로 나타내 보면 지반조건에 따라 0.36 부터 1.07 까지의 다양한 특성을 갖는 것으로 분석할 수 있다. 이와같은 A 값과 Skov and Denver(1988)의 측정값 A = 0.6 으로 부터 점성토 지반에서 시간경과에 따른 말뚝지지력 증가특성은 지반조건별로 크게 차이가 있음을 알 수 잇다.

사질토 지반에서의 시간경과에 따른 말뚝지지력 증가는 지반의 포화정도에 따라 상이한 것으로 나타나고 있다.

[표 6]에는 포화되지 않은 사질토 지반에 2 본의 콘크리트말뚝과 1 본의 강관말뚝을 항타한 후 재항타와 정재하시험을 실시한 결과를 표시하였다. 시험결과는 점성토지반에서 시간경과에 따른 말뚝지지력 증가율이 log t 에 비례하는 것과는 달리시간에 직접 비례하는 것으로 나타나고 있다.([그림 19])


[표 6] 포화되지 않은 사질토 지반에서의 시험결과 요약

왕 당 5	말뚝규격	시험종류	시험시기 항타종료후(일)	극한지지력 (KN)	지지력 증가비율
	콘크리트말뚝	EOID	_	2487	1,00
1	508×508 mm (ø 38 mm 중공부)	RSTR	3	3243	1,30
		STAT	12	6450	2.74
	2 콘크리트말뚝 356×356 mm	EOID	_	1134	1,00
2		RSTR	7	2309	2,03
		STAT	16	3736	3,29
	강관말뚝 3 (선단부 폐쇄)	EOID	_	681	1,00
3		RSTR	7	1232	1,81
	ø 324 mm×6 mm(t)	STAT	14	2224	3,26

주) EOID : 항타종료시(end of initial driving)

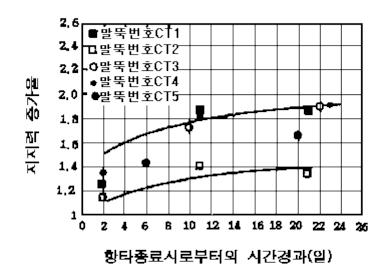
RSTR: 재항타(restrike)

STAT : 정재하시험 - 옆의 숫자는 정재하시험 차수

[그림 19] 포화되지 않은 사질토 지반에서의 시간경과에 따른 말뚝지지력 증가 (after Svinkin등, 1994)

시간경과에 따른 말뚝지지력 증가율은 2.59~3.29 에 달하고 있다. 이와같은 말뚝지지력 증가율은 사질토 지반에서는 예측하기 어려운 큰 값으로, 사질토 지반에서도 시간경과에 따른 말뚝지지력 증가효과를 무시할 수 없음을 보여주고 있다.

포화된 사질토 지반에서의 시험결과는 이와는 약간 상이한 것으로 나타나고 있다. 포화된 사질토 지반에서는 5 본의 콘크리트 말뚝이 항타 시공되었으며 시간경과에 따라 재항타 및 정재하시험이 실시되었다. 시험결과는 [표 7]에 요약하였으며 [그림 20]에는 이들 시험결과를 함께 도시하였다.


[표 7] 포화된 사질토 지반에서의 시험결과요약

말뚝 번호	말뚝규격	시험종류	시험시기 항타종료후(일)	극한지지력 (KN)	지지력 증가비율
		EOID	-	913	1,00
CT1	콘크리트말뚝	RSTR-1	2	1145	1,25
	457×457mm	RSTR-2	11	1702	1,86
		STAT	21	1666	1,85
		EOID	_	1907	1,00
CT2	콘크리트말뚝	RSTR-1	2	2176	1,14
012	457×457mm	RSTR-2	11	2668	1,40
		STAT	21	2540	1,34
	콘크리트말뚝 (ø267mm 중공부)	EOID	_	1513	1,00
СТЗ		RSTR-1	1	_	1,00
		RSTR-2	10	2615	1,73
		STAT	22	2869	1,90
		EOID	_	1986	1,00
CT4	콘크리트말뚝 610×610mm	RSTR-1	2	2691	1,35
	(ø267mm 중공부)	RSTR-2	11	3617	1,82
		STAT	23	3724	1,90
	콘크리트말뚝	EOID	-	2949	1,00
СТ5	915×915mm	RSTR-1	6	4210	1,43
	(ø570mm 중공부) 	STAT	20	4900	1,66

주) EOID : 항타종료시(end of initial driving)

RSTR : 재항타(restrike) - 옆의 숫자는 재항타 차수

STAT : 정재하시험

[그림 20] 포화된 사질토 지반에서의 시간경과에 따른 말뚝지지력 증가 (after Svinkin등, 1994)

포화된 사질토 지반에서의 시간경과에 따른 말뚝지지력 증가는 포화되지 않은 지반의 경우에 비하여 그리 크지 않은 것으로 나타나고 있다. 지지력 증가율도 1.40~2.10 정도의 낮은 값이지만 실무적 차원에서 무시할 수는 없는 영향을 주는 것으로 판단된다.

5. 결론 및 제언

본 [파일테크 기술자료 2]에서는 시간경과에 따른 말뚝지지력 변화를 원리와 사례별로 설명하였다. 이에 관해서는 일찍부터 알려져 왔으나(Tomlinson, 1987) 말뚝지지력 측정의 어려움으로, 그 효과 입증이 제대로 되지 못하였다.

최근의 동재하시험(Dynamic Testing of Piles)기술의 발전은 동재하시험 결과와 정재하시험 결과 간의 차이를 거의 극복할 수 있게 되었으며, 따라서 비교적 간단하게 말뚝지지력 측정이 가능하게 되었다.

이러한 기술발전으로 시간경과에 따른 말뚝지지력 변화연구도 활발하게 진행되었으며, 그 결과는 본 [파일테크 기술자료 2]에 설명한 것처럼 점성토지반 뿐만아니라 사질토지반에서도 그 효과는 무시할 수 없는 것으로 나타나고 있다.

이에 선진외국에서는 이와 같은 효과를 실무 설계에 이용하여 큰 효과를 얻고 있다. 우리 국내에서는 아직 이 부분에 대하여 체계적인 연구가 되지 못하고 있지만, 현장시험결과 상당한 영향이 있을 가능성이 높은 것으로 판단된다.

그러나 시간경과에 따른 말뚝지지력 변화는 본 [파일테크 기술자료 2]에서 설명한 것처럼 반드시 증가하는 것은 아닐지도 모른다. 극히 한정된 사례이기는 하지만 시간경과에 따라 말뚝지지력이 오히려 감소한 연구결과도 보고된 바 있음을 유의하여야 할 것이다.

파일테크에서는 이러한 점을 감안하여 대규모 현장시험을 계획하고 있으며, 시험결과가 얻어지는 94 년 하반기에는 이에 대한 보고 및 구체적 실무적용 방안을 제시할 계획이다.

6. 참 고 문 헌

- 1. Al Awkati, A. (1975). "On problems of soil bearing capacity at depth." PhD Thesis, Duke University.
- 2. Daramola,O.(1980). "Effect of consolidation age on stiffness of sand." Geotechnique Vol.30, No.2, pp.214.
- 3. Fellenius, B.H., Riker, R.E., O'Brien, A.J. and Tracy, G.R. (1989). "Dynamic and static testing in soil exhibiting set-up." Journal of Geotechnical Engineering, ASCE, Vol. 115, No. GT7, pp. 984-1001.
- 4. Francescon, M. (1982). "Discussion in 2nd Int Conf. on Num. Methods in Offshore Piling." Astin.
- Karlsrud, K. and Haugen, T. (1986). "Axial static capacity of steel model piles in overconsolidated clay." Bull. No.163, Norwegian Geotechnical Institute, Oslo, Norway, 3.
- 6. Kehoe, S.P. (1989). "An analysis of time effects on the bearing capacity of driven piles." Report, Department of Civil Engineering, University of Florida, Gainesville, Florida, spring.
- 7. Preim, M.J., March, R. and Hussein, M.(1989). "Bearing capacity of piles in soil, with time dependent characteristics." Piling and Deep Foundations. Proceedings of the 3rd International Conference, London, pp.363-370.
- 8. Randolph, M.F. and Wroth, C.P. (1982). "Recent developments in understanding the axial cpapcity of piles in clay." Ground Engineering, Vol. 15, No. 7, pp. 17-32.
- 9. Randolph, M.F., Carter, J.P. and Wroth, C.P. (1979). "Driven piles in clay-the effects of installation and subsequent consolidation." Geotechnique, Vol. 29, No. 4, pp. 361-393.
- 10. Robinsky, E.I. and Morrison, C.E. (1964). "Sand displacement and compaction around model friction piles." Canadian Geotechnical Journal, Vol.1, No.2, pp.81-93.
- 11. Schmertmann, J.H. (1987). Discussion of "Time-dependent strength gain in freshly deposited or densified sand." by J.Mitchell and Z.V.Solymar, Journal of Geotechnical Engineering, ASCE, Vol. 113, No. GT2, pp. 173-175.
- 12. Schmertmann, J.H. (1991). "The mechanical ageing of soils." The 25th Karl

- Terzaghi Lecture, Journal of Geotechnical Engineering, ASCE, Vol.117, No.GT9, pp.1288-1330.
- 13. Skempton, A.W. (1986). "Standard penetration test procedures and the effects in sands of overburden pressure, relative density, particle size, ageing and overconsolidation." Geotechnique, Vol. 36, No. 3, pp. 425-447.
- 14. Skov,R. and Denver,H.(1988). "Time-dependance of bearing capacity of piles."

 Proceedings of the 3rd International Conference on the Application of StressWave Theory to Piles, BiTech Publishers, Ottawa, Canada, pp.879-888.
- 15. Soderberg, L. (1962). "Consolidation theory applied to foundation pile time effects." Geotechnique, Vol. 12, No. 3, pp. 217-225.
- 16. Svinkin, M.R., Morgano, C.M. and Morvant, M.(1994). "Pile capacity as a function of time in clayey and sandy soils", Proceedings of the 5th International Conference on Piling and Deep Foundations, Bruges, Belgium, paper 1.11.
- 17. Tavenas, F. and Audy, R. (1972). "Limitations of the driving formulas for predicting the bearing capacities of piles in sand." Canadian Geotechnical Journal, Vol. 9.
- 18. Thompson, C.D. and Thompson, D.E. (1985). "Real and apparent relaxation of driven piles." Journal of Geotechnical Engineering, ASCE, Vol. 111, No. 2, pp. 225-237.
- 19. Tomlinson, M.J. (1987). "Pile Design and Construction Practice." (3rd edition). A Viewpoint Publication, 378.pp.
- 20. Walker, L.K. and Darvall, P.Le.P. (1973). "Downdrag on coated and uncoated piles." Proc. 8th ICSMFE, Vol. 2.1, pp. 257-262.
- 21. Yang, N.C. (1970). "Relaxation of piles in sand and inorganic silt." Journal of soil Mechanics and Foundation Engineering, ASCE, Vol.96, SM2, pp.395-409.